Вход на сайт Навигация по сайту Любить и уважать Бонус-счастливчики
|
Содержимое файла "03.diplom_PZ_ukr.doc" (без форматирования) 1.3. Опис структурної схеми. 1.3.1. Огляд і аналіз структурних схем систем безпребійного живлення. Джерело безперебійного живлення - автоматичний пристрій, що забезпечує нормальне живлення навантаження при повному зникненні струму з зовнішньої електромережі в результаті аварії або неприпустимо високому відхиленні параметрів напруги в мережі від номінальних значень і використовує для аварійного живлення навантаження енергію акумуляторних батарей. Розглянемо декілька основних типів побудови структурних схем ДБЖ: ДБЖ резервного типу. Лінійно-інтерактивне ДБЖ. ДБЖ з подвійним перетворенням енергії. ДБЖ резервного типу (Off-Line або standby) Рис. 1.3.1. ДБЖ типу Off-Line. Джерело безперебійного живлення, виконане за схемою з комутуючим пристроєм, що у нормальному режимі роботи забезпечує підключення навантаження безпосередньо до зовнішньої електромережі, а в аварійному переводить її на живлення від акумуляторних батарей. Перевагою ДБЖ резервного типу є його простота і невисока вартість, а недоліком - ненульовий час перемикання (~4 мс) на живлення від акумуляторів та більш інтенсивна їхня експлуатація, тому що джерело переводиться в аварійний режим при будь-яких несправностях в електромережі. ДБЖ резервного типу, як правило, мають невелику потужність і застосовуються для забезпечення гарантованого електроживлення окремих пристроїв (персональних комп'ютерів, робочих станцій, офісного встаткування) у регіонах з гарною якістю електричної мережі. Лінійно-інтерактивне (Line-Interactive) . Джерело безперебійного живлення, виконане за схемою з комутуючим пристроєм (Off-Line), доповненої стабілізатором вхідної напруги на основі автотрансформатора з перемикаючими обмотками. Рис. 1.3.2. ДБЖ типу Line-Interactive. Основна перевага лінійно-інтерактивного ДБЖ у порівнянні із джерелом резервного типу полягає в тому, що воно здатне забезпечити нормальне живлення навантаження при підвищеній або зниженій напрузі електромережі (найпоширеніший вид несправностей у вітчизняних лініях електропостачання) без переходу в аварійний режим. У підсумку продовжується термін служби акумуляторних батарей. Недоліком лінійно-інтерактивної схеми є ненульовий час перемикання (~4 мс) навантаження на живлення від батарей. По ефективності лінійно-інтерактивні ДБЖ займають проміжне положення між простими й відносно дешевими резервними джерелами (Off-Line) і високоефективними, але і дорожчими джерелами із подвійним перетворенням енергії (On-Line). Як правило, лінійно-інтерактивні ДБЖ застосовують для забезпечення гарантованого живлення персональних комп'ютерів, робочих станцій, файлових серверів, вузлів локальних обчислювальних мереж й офісного встаткування. Автоматичний регулятор напруги, побудований на основі автотрансформатора з перемикаючими обмотками. Застосовується в ДБЖ, зібраних за лінійно-інтерактивною схемою, для ступінчатого коректування вхідної напруги убік його підвищення. Число обмоток регулятора визначає діапазон вхідних напруг, при яких ДБЖ забезпечує нормальне живлення навантаження без переходу в аварійний режим роботи. В ДБЖ такої структури всередньому такий діапазон припустимої зміни вхідної напруги становить від -20% до +20% від номінального значення 220. ДБЖ з подвійним перетворенням енергії (On-Line) Джерело безперебійного живлення, в якому вхідна змінна напруга спочатку перетворюється випрямлячем у постійну, а потім за допомогою інвертора знову в змінну – є джерелом з подвійним перетворенням енергії (On-Line). Акумуляторна батарея постійно підключена до виходу випрямляча і входу інвертора і живить останній в аварійному режимі. Рис. 1.3.1. ДБЖ типу On-Line. Така схема побудови ДБЖ дозволяє забезпечити практично ідеальне живлення навантаження при будь-яких неполадках у мережі (включаючи фільтрацію високовольтних імпульсів та електромагнітних завад) і характеризується нульовим часом перемикання в аварійний режим без виникнення перехідних процесів на виході пристрою. До недоліків схеми з подвійним перетворенням енергії варто віднести її порівняльно велику складність, більш високу вартість. ДБЖ типу On-Line застосовують у тих випадках, коли за тих або інших причинах потрібні підвищені вимоги до якості електроживлення навантаження, якими можуть бути вузли локальних обчислювальних мереж (мережне встаткування, файлові сервери, робочі станції, персональні комп'ютери), устаткування обчислювальних залів, системи керування технологічним процесом. За схемою з подвійним перетворенням (On-Line) побудовані, наприклад, моделі PW5125RM компанії Powerware. Вони оснащені плавним стабілізатором вхідної напруги, завдяки якому діапазон припустимих значень вхідної напруги, при яких джерело не переходить на живлення від батарей, становить 166 ... 276В. В таких схемах присутній режим Bypass, живлення навантаження відфільтрованою напругою електромережі в обхід основної схеми ДБЖ. Перемикання в режим Bypass, підтримуваний внутрішньою схемою ДБЖ або спеціальним зовнішнім модулем, може виконуватися автоматично або вручну. ДБЖ, що має відповідну вбудовану схему, автоматично переходить у режим Bypass по команді пристрою керування при перевантаженні вихідних ланцюгів або при виявленні несправності в важливих вузлах. У такий спосіб навантаження захищається не тільки від збоїв у живильній електромережі, але й від неполадок у самому ДБЖ. Можливість ручного включення режиму Bypass передбачається на випадок проведення профілактичного обслуговування ДБЖ або заміни його вузлів без відключення навантаження. Оскільки, як видно з вище сказаного, схема типу Off-Line є найбільш простою та дешевою, то і розроблюваний у даному дипломному проекті пристрій забезпечення безперебійного живлення теж побудований за цим принципом. Проте, вдосконалення функціональної схеми та характеристик дозволить мати більш затребуваний та конкурентно-спроможний виріб з кращими параметрами експлуатації і меншою ціною, ніж аналоги. 1.3.2. Опис структурної схеми джерела безперебійного живлення. Структурна схема джерела безперебійного живлення представлена в графічній частині на аркуші РТ01.430127.001 Э1. Побудова систем безперебійного живлення залежить від вирішуваними ними задач. В деяких випадках необхідно якнайменший час переключення навантаження на живлення від АБ чи навпаки. В інших потрібно забезпечити довготривалу роботу від АБ, при цьому час переключення не являється критичною величиною. Тобто, можна сказати, що для кожного конкретного випадку потрібно вирішувати іншу технічну задачу. Розроблюваний блок для забезпечення безперервного живлення різноманітних пристроїв (серверів, персональних комп’ютерів, модемів та ін.) стабілізованою напругою 220В, 50Гц. Система призначена для живлення пристроїв, що мають імпульсні джерела живлення. Це дозволяє зменшити вимоги щодо розробки нашого приладу, так як імпульсні джерела живлення здатні працювати в мережі 20% від нормального значення. Ще однією перевагою є здатність їх працювати від мережі, що мають не синусоїдальну характеристику напруги (апроксимована синусоїда, квазі синусоїда). Розглянемо основні блоки, що входять до складу пристрою: Пристрій комутацій. Мережевий фільтр. Зарядний пристрій. Акумуляторна батарея. Перетворювач постійної напруги в постійну. Стабілізатор постійної напруги. Перетворювач постійної напруги в змінну. Пристрій комутацій байпас. Датчик струму. Вихідний фільтр. Датчик температури. Інтерфейс. Пристрій індикації. Пристрій керування роботою ДБЖ. Для забезпечення роботи та функціонування всіх частин ДБЖ, необхідна ланка, котра здійснювала б зв’язок між всіма цими частинами. Можна розглянути декілька видів таких схем : Аналогові системи, операції регулювання в яких здійснюються шляхом порівняння, підсилення, перетворення аналогових сигналів. Похибка установки параметрів в такій системі сильно залежить від параметрів активних і пасивних елементів схеми. Такі системи використовуються, в основному в недорогих пристроях. Цифрові системи, операції керування проводяться над цифровими величинами, отриманими із аналогових сигналів шляхом оцифровування аналого-цифровими перетворювачами (АЦП). Точність таких систем набагато вища за рахунок використання математичного апарату числення. Комбіновані, операції керування та регулювання в яких виконуються або аналоговими, або цифровими пристроями. В нашому випадку система керування роботою ДБЖ побудована на мікроконтролері ATTiny26. Він представляє собою високопродуктивний контролер з функціями багатоканального аналого-цифрового перетворювача. Ввід та вивід інформації в МК може здійснюватись як в аналоговому так і в цифровому вигляді. Використовування новітніх розробок, що містять в своєму складі МК, дозволяє набагато спростити схему. Мікроконтролер управляє роботою як схеми управління так і роботою всього пристрою. Схема управління здійснює підключення ДБЖ до мережі, подаючи відповідну команду включення на пристрій комутацій, здійснює управління переключенням навантаження на живлення від мережі чи від АБ, слідкує за напругою на АБ. Якщо напруга на АБ стає меншою за 10,5В, то здійснюється аварійне відключення ДБЖ. Аварійне відключення здійснюється також, коли температура навколишнього середовища виходить за межі допустимої. Для вимірювання температури використовується датчик температури. На пристрій управління роботою ДБЖ поступає інформацію величини напруги в мережі. Обробляючи цю інформацію МК виробляє відповідні сигнали управління для інших вузлів, складових блоку. Для вимірювання вихідної потужності використовується датчик струму. Якщо через датчик протікає струм більший допустимого, то схема управління відключає навантаження. Це забезпечує захист від виходу з ладу пристрою перетворення постійної напруги в змінну. Особливо велике значення в ДБЖ має наявність зв’язку з ПК. Це дозволяє оператору (адміністратору) слідкувати за станом мережі, АБ та всієї роботи ДБЖ. В даному випадку використовується стандартний інтерфейс зв’язку МК та ПК – RS-232. Це дозволяє здійснювати дистанційний моніторинг ДБЖ та безпечне завершення роботи ПК при аварії чи довготривалій відсутності напруги в мережі. Вхідна напруга 220В, 50Гц поступає через пристрій комутацій та мережевий фільтр на зарядний пристрій та пристрій та пристрій комутації бай пас. Мережевий фільтр призначений для запобіганню попаданню завад, що виникають при роботі ДБЖ в мережу, тобто захисту споживачів від електромагнітних завад. Зарядний пристрій забезпечує зарядку АБ при наявності напруги мережі, тобто при нормальній роботі ДБЖ, забезпечуючи тим самим постійну готовність до роботи ДБЖ в автономному режимі. Пристрій перетворює напругу мережі у стабілізовану постійну напругу. Величина напруги заряду постійно контролюється МК. Це тим самим дозволяє правильно експлуатувати батареї. Досить велика вихідна потужність зарядного пристрою дає плюс при роботі ДБЖ з значно заниженою вхідною напругою пристрою, що знаходиться в діапазоні від 90В до 185В. При такій вхідній напрузі частина вихідної потужності джерела забезпечується роботою зарядного пристрою, що набагато подовжує роботу навантаження під час несправностей в мережі. Перетворювач постійної напруги в постійну виконує роль перетворювача постійної напруги 120В в постійну 200В. Даний пристрій побудований по схемі імпульсного перетворювача з ШІМ. Напруга на його виході постійна, але не стабілізована, тобто залежить від зміни вхідної напруги. Для стабілізації використовується стабілізатор постійної напруги. Стабілізатор побудований по схемі однотактного імпульсного підвищуючого стабілізатора. Напруга на акумуляторі змінюється в межах 10,5...13,8В, а вихідна ДБЖ повинна залишатись стабільною. Перетворювач постійної напруги в змінну здійснює формування вихідної стабілізованої напруги 220В, 50Гц. Управління та синхронізацію даного пристрою з мережею здійснює пристрій керування ДБЖ. Вихідний фільтр служить фільтрації електромагнітних завад та запобіганню їх попаданню навантаження. Алгоритм роботи ДБЖ приведений в графічній частині проекту. 1.4. Опис схеми електричної принципової. Схема електрична принципова представлена в графічній частині дипломного проекту на аркуші РТ01.430127.001Э3. Відповідно до структурної схеми, джерело безперебійного живлення складається з кількох функціональних вузлів. Розглянемо кожен з них окремо. Зарядний пристрій Зарядний пристрій побудований по однотактній зворотньоходовій схемі перетворення енергії. Управляючою мікросхемою є IMS UC3842 фірми Fairchild. Функціональна схема IMS UC3842 приведена на рис. 1.4.1. Принцип роботи заклечається в наступному: на діодний VD1 подається змінна напруга мережі 220В. Після VD1 на згладжуючому конденсаторі маємо постійну напругу 306В. Початковий запуск роботи IMS VC2 відбувається через резистор R41. Далі при нормальному режимі роботи DA1 живиться від додаткової обмотки W3 трансформатора Т2. Напруга знята з W3 випрямляється діодом VD8 та згладжується ємнісним фільтром побудованому на конденсаторах С24, С25. Величина напруги живлення IMS складає 12В. Після подачі живлення на 8 виводі DA2 встановлюється опорна напруга 5В. На вхід тактового генератора, через інтегруючу ланку R14C11 подається сигнал 5В. Рис. 1.4.1. Функціональна схема UC3842. На 6 виводі DA2 встановлюється високий потенціал (12В), який через резисторний дільник R27R29 поступає на затвор польового транзистора VT1. Транзистор VT1 включається коли потенціал між затвором і витоком складає більше 4В. При включенні VT1 через обмотку W2, транзистор VT1, резистор R30 починає протікати струм. Резистор R30 являється вимірювальним резистором. З його виводів знімаємо сигнал про величину струму, що протікає через транзистор і первинну обмотку трансформатора Т2. Цей сигнал поступає через R28 на вхід з DA2. Даний вхід являється прямим входом внутрішнього компаратора по струму. На вхід 1 DA2 подається сигнал зворотного зв’язку по напрузі. Цей сигнал подається на інвертуючий вхід від компаратора по струму. При досягненні порогового рівня на вході компаратора виробляється сигнал на виключення вхідного транзистора. Струм через первинну обмотку Т2 наростає лінійно, але при включенні і виключенні транзистора виникають викиди струму. Ці викиди можуть призводити до самовільного включення і виключення ІМС. Для запобігання цьому явищу ставиться RC фільтр. Рис. 1.4.1. Рис. 1.4.1. Схема компаратора струму з RC-фільтром. Після включення транзистора починається етап передачі енергії накопленої в трансформаторі в навантаження. Напруга знята з обмотки W1, Т2 випрямляється діодом VD11 та фільтрується ємнісним фільтром С35, С36. Схема стабілізації вихідної напруги побудована на управляючому стабілітроні VD12-TL431. Резистори R56, R57, R58 утворюють резисторний дільник, величиною опорів якого, в загальному, виставляється значення вихідної напруги зарядного присторою. Резистор R54 є струмообмежуючим резистором для стабілітрона VD12 та оптрона U1.2. Перетворювач постійної напруги в постійну Даний вузол призначений для перетворення постійної напруги 12В у постійну напругу 300В. Вихідна напруга даного перетворювача є нестабілізованою, при Uвх=13,8В, Uвих=300В при Uвх=10,5В, Uвих=225В. Тому для нормальної роботи ДБЖ потрібна падальна стабілізація Uвих. Даний перетворювач побудований на мікросхемі S63525А, функціональна схема якої приведена на Рис. 1.4.3. Рис. 1.4.3. Функціональна схема SG3525. З виходів мікросхеми (виводи 14 та 11) прямокутні імпульси поступають на трансформатор Т1. На вторинних обмотках трансформатора імпульси будуть двохполярні з скважністю 0,9. Резисторно – конденсаторні ланки С23R31 та С27R32 призначені для того, щоб збити амплітуду викидів при переключеннях. Сам перетворювач побудований по схемі з плаваючою середньою точкою. Пари силових транзисторів VT4, VT5 та VT6, VT7 включаються по черзі з щілинністю майже 0,5. Такий режим вибраний з метою зменшення викидів при переключенні, та отриманню симетрії в кожен період переключення. З вторинної обмотки прямі імпульси випрямляються діод ними мостом VD17, VD18, VD19, VD20 та згладжується фільтром С1L1, С2С4, С3С5. З вторинної обмотки Т3 також беруться додаткові напруги живлення 9В та 18В, гальванічно розв’язані між собою. Стабілізація цих напруг проводиться стабілітроном VD21 VD22 VD23 VD24. Мікросхема VD1 включена по типовій схемі включення. Ланкою С7,R1 визначається вихідна частота. Живлення вихідних каскадів ІМС проводиться через R15. С12, С13 призначені для фільтрації напруги живлення ІМС. Дистанційне керування роботою перетворювача проводиться через 10 вивід DA1 від мікроконтроллера. Стабілізатор напруги 300В Даний стабілітрон побудований по схемі однотактового підвищуючого перетворювача. Схема побудована на ІМС UC3842. Принцип роботи заклечається в наступному: при подачі живлення на DA4 на її вихід (вивід 6) подається імпульс амплітудою 9В, який через дільник R18R33 поступає на затвор VT2 і відкриває його коли транзистор відкритий через L2 VT2 R34 протікає струм. Індуктивність L2 накопляє енергію. При досягненні певного рівня сигналу, що знімається з вимірювального резистору R34, на виході DA1 з’являється логічний нуль. Наступний імпульс з’явиться при новому циклі тактового генератора. Зворотній зв’язок по напрузі здійснюється через резисторну ланку R11, R8, R9. Оскільки для утворення спільної точки з напругою мережі утворено ємнісний дільник С2С4, С3С5 то вузол на DA4 стабілізує додатню півхвилю вихідної напруги, а вузол на DA5 – від’ємну. Елементи схеми підібрані таким чином, що вхідній напрузі 300В на виході теж 300В, тобто стабілізація не потрібна. По мірі зменшення напруги на акумуляторі, на виході перетворювача постійної напруги в постійну також напруга буде зменшуватись, а вузол стабілізації її буде стабілізувати до 300В. Оскільки заземлені виводи DA5 підключені до мінусової напруги, яку потрібно стабілізувати, а стабілізацію потрібно здійснювати відносно нульової шини, то тут використовується ще додатковий вузол на DA3. Вихідний інвертор Вихідний інвертор побудований по півмостовій схемі. Навантаження підключається до середньої точки конденсаторного дільника C2 C4, C3 C5 та виходу інвертора (колектор VT13). Ключовими елементами каскаду є силові транзистори VT12, VT13. керування роботою здійснюється за допомогою мікроконтроллера. Даний вузол забезпечує дуже хороше наближення напруги до синусоїдальної. Це дозволило виконати два силових ключа VT12, VT13 на біполярних транзисторах з ізольованим затвором (IGBT), котрі працюють в лінійному режимі. Їх почерговим відкриттям керують прямокутні імпульси, що поступають в протифазі від контролеру DD1. Ці імпульси проходять ланки, що формують з них сигнал, який подібний по формі до півперіода синусоїди і подаються на затвори VT12, VT13. Індуктивність L4 забезпечує згладжування фронтів вихідних імпульсів з інвертора. Схема байпасу Схема байпасу призначена для швидкого перемикання навантаження на роботу від мережі або на роботу від акумуляторної батареї. Перемикання здійснюється за допомогою реле K1, яке керується мікро контролером. Конденсатори C52, C53 служать запобіганню виникнення іскри і підгорянню контактів реле при переключеннях. Для забезпечення кращої форми вихідної напруги та запобіганню попадання електромагнітних завад від ДБЖ в навантаження служить фільтр C56, L6, C59. Вузол керування Вузол керування роботою ДБЖ виконаний на мікроконтролері DD1-ATTiny 261. Функціональна схема контролера приведена на рис. 1.4.4. Рис. 1.4.4. Функціональна схема ATTiny26. Для синхронізації роботи ДБЖ з мережею використовується вимірювальний трансформатор T4, вихідний сигнал з якого випрямляється та подається на входи АЦП мікроконтролера. Для вимірювання струму який споживається навантаженням використовується трансформатор струму T5. Його вихідний сигнал випрямляється і подається на вхід АЦП мікроконтролера. Загальний алгоритм роботи МК вписується в алгоритм роботи всього ДБЖ. Після включення вмикача SA1 („Вкл.”) на вхід DA6 поступає постійна напруга з акумулятора. DA6 формує на виході +5В, необхідних для живлення мікроконтролера. Мікроконтролер, після подачі на нього живлення, починає проводити вимірювання напруги акумуляторної батареї, а також вмикає реле K2, тим самим під’єднавши ДБЖ до мережі. Далі МК вимірює напругу мережі. Якщо напруга мережі не в межах норми, то МК дає команду на перемикання на роботу від акумулятора. Коли ж ні напруга акумулятора, ні напруга мережі не відповідає нормам, то МК здійснює повне відключення навантаження від мережі. При нормальному функціонуванні від мережі МК постійно слідкує за мережею і підганяє фазу вихідного сигналу від інвертора до фази сигналу з мережі. Це потрібно для того, щоб у разі зникнення напруги мережі переключення на роботу від АБ пройшло з найменшими втратами. Відповідно при відновленні напруги в мережі, МК спочатку робить підгонку фази вихідного сигналу з інвертора до сигналу з мережі, а тільки потім відбувається переключення на роботу від мережі. Для запобігання попадання завад з ДБЖ у мережу поставлений мережевий фільтр C54, C55, C56, L5, C58. Зв’язок мікроконтролера з ПК здійснюється через стандартний інтерфейс RS-232 (Com port). Інтерфейс виконаний з оптоізоляцією, що збільшує електробезпеку при роботі з ДБЖ. Для індикації режимів роботи ДБЖ використовується індикатори HL1 – „Мережа”, HL2 - „~220В”, HL3 - „АБ 10.5В”. 1.6. Обґрунтування вибору елементів схеми. Джерело безперервного живлення повинне забезпечувати цілодобову роботу будь-якого пристрою, що підключений до нього, із збереженням вихідних параметрів, тому до нього висуваються жорсткі вимоги, як до конструкції так і до вибору елементів схеми. Умовно елементи схем можна поділити на елементи загального застосування і спеціальні. Елементи загального застосування є виробами масового виробництва, тому вони піддалися досить широкій стандартизації. Стандартами і нормами встановлені техніко-економічні і якісні показники, параметри і розміри. Такі елементи називають типовими. Вибір типових елементів проводиться по параметрах і характеристикам, що описують їх властивості як при нормальних умовах експлуатації, так і при різних впливах (кліматичних, механічних і ін.). Основними електричними параметрами є: номінальне значення величини, характерної для даного елемента (опір резисторів, ємність конденсаторів, індуктивність котушок і т.інш.) і межі припустимих відхилень; параметри, що характеризують електричну міцність і здатність довгостроково витримувати електричне навантаження; параметри, що характеризують втрати, стабільність і надійність. Основними вимогами, якими потрібно керувати при проектуванні радіоелектронної апаратури, є вимоги по найменшій вартості виробу, його високій надійності і мінімальним масогабаритним показникам. Крім того, при проектуванні важливо збільшувати коефіцієнт повторюваності електрорадіоелементів. Виходячи з перерахованих вище критеріїв зробимо вибір елементної бази приладу. Література. В.Г. Костиков, Е.М. Парфенов, В.А. Шахнов Источники электропитания электронных средств Москва, Гарячая линия-Телеком 2001г. Гребнев В.В. Микроконтроллеры семейства AVR фирмы Atmel.-М.: ИП Радиософт, 2002 – 176 с.: ил. ДСТУ 3169 - 95 (ГОСТ 23585-79)- Монтаж электрической радиоэлектронной аппаратуры и приборов. ДСТУ 3413-96 – Вимоги до електричних побутових сетей. K. Zeeman and V. Wadoock “Calculation PWM supply”, 2004. Фрунзе А.В. Микроконтроллеры? Это же просто! Т.1. – М.:ООО ” ИД СКИМЕН”, 2002. – 336 с., илл. Методичні вказівки до дипломного проектування для студентів спеціальності “Радіотехніка” /Укл. В.О.Дмитрук, В.В.Лисак, С.М.Савченко, В.І.Правда. – К.: КПІ, 1993. – 20 с. Костиков В.Г., Парфенов Е.М., Шахнов В.А. Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для вузов. – 2-е изд. – М.: Горячая линия – Телеком, 2001. – 344 с.: ил. Перельман Б.Л. Полупроводниковые приборы. Справочник – “Солон”, “Микротех”, 1996 г. –176 с.: ил. Конструирование РЭА. Оценка и обеспечение тепловых режимов. Учеб. пособие / В. И. Довнич, Ю. Ф. Зиньковський. – К.: УМК ВО, 1990. –240 с. ГОСТ 27.003-90 – Надежность в технике. Состав и общие правила задания требований по надежности. Семенов Б.Ю. Силовая электроника для любителей и профессионалов. М.: Солон-Р, 2001. – 334 с.: ил. ГОСТ 12.2.007.0-75 Изделия электротехнические. Общие требования безопасности. РТ 01.430127.001 ПЗ Арк. Дата Підпис № докум. Арк. Змн. |
Посетителей: 2, из них зарегестрированных: 0, гостей: 2 Зарегистрированные пользователи: Подробно | Страница сгенерирована за 0.063 сек. |